Organizer induction determines left-right asymmetry in Xenopus.

نویسندگان

  • N Nascone
  • M Mercola
چکیده

Vertebrates appear bilaterally symmetrical but have considerable left-right (LR) asymmetry in the anatomy and placement of internal organs such as the heart. Although a number of asymmetrically expressed genes are known to affect LR patterning, both the initial source of asymmetry and the mechanism that correctly orients the LR axis remain controversial. In this study, we show that the induction of dorsal organizing centers in the embryo can orient LR asymmetry. Ectopic organizing centers were induced by microinjection of mRNA encoding a variety of body axis duplicating proteins, including members of the Wnt signal transduction pathway. The ectopic and primary body axes form side-by-side conjoined twins, with the secondary axis developing as either the left or right sibling. In all cases, correct LR asymmetry was observed in the left twin, regardless of whether it was derived from the primary axis or induced de novo by injection of Xwnt-8, beta-catenin, or Siamois mRNA. In contrast, the right twin was generally unbiased, regardless of the origin of the left body axis, as seen in many instances of experimentally induced and spontaneous conjoined twins. An unanticipated exception was that right twins induced by beta-catenin and Siamois, two downstream effectors of Wnt signaling, exhibited predominately normal heart looping, even when they formed the right twin. Taken together, these results indicate that LR asymmetry is locally oriented as a consequence of Wnt signaling through beta-catenin and Siamois. We discuss the possibility that signals upstream of beta-catenin and Siamois might be required in order for a right sibling to be randomized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin.

How embryos consistently orient asymmetries of the left-right (LR) axis is an intriguing question, as no macroscopic environmental cues reliably distinguish left from right. Especially unclear are the events coordinating LR patterning with the establishment of the dorsoventral (DV) axes and midline determination in early embryos. In frog embryos, consistent physiological and molecular asymmetri...

متن کامل

Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus.

The left-right body axis is defined relative to the dorsal-ventral and anterior-posterior body axes. Since left-right asymmetries are not randomly oriented with respect to dorsal-ventral and anterior-posterior spatial patterns, it is possible that a common mechanism determines all three axes in a coordinate manner. Two approaches were undertaken to determine whether alteration in dorsal-anterio...

متن کامل

Leftward Flow Determines Laterality in Conjoined Twins

Conjoined twins fused at the thorax display an enigmatic left-right defect: although left twins are normal, laterality is disturbed in one-half of right twins [1-3]. Molecularly, this randomization corresponds to a lack of asymmetric Nodal cascade induction in right twins [4]. We studied leftward flow [5, 6] at the left-right organizer (LRO) [7, 8] in thoracopagus twins in Xenopus, which displa...

متن کامل

The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry.

Vertebrate left-right (LR) asymmetry originates at a transient left-right organizer (LRO), a ciliated structure where cilia play a crucial role in breaking symmetry. However, much remains unknown about the choreography of cilia biogenesis and resorption at this organ. We recently identified a mutation affecting NEK2, a member of the NIMA-like serine-threonine kinase family, in a patient with co...

متن کامل

Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo

During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 189 1  شماره 

صفحات  -

تاریخ انتشار 1997